Electric and magnetic properties of sub-wavelength plasmonic crystals

نویسندگان

  • Gennady Shvets
  • Yaroslav A Urzhumov
چکیده

Electromagnetic properties of a new class of two-dimensional periodic nanostructured materials, sub-wavelength plasmonic crystals (SPCs), are investigated. An SPC is a periodic lattice of metallic inclusions with negative dielectric permittivity < 0 imbedded in a dielectric host with h > 0, with the lattice period much smaller than the wavelength of light. It is found that two types of propagating electromagnetic waves are supported by SPCs: (a) scale-invariant modes whose dispersion relation is almost independent of the lattice period, and (b) scale-dependent narrow-band resonances whose dispersion strongly depends on the lattice period. The scale-invariant modes are accurately described using a frequency-dependent quasi-static dielectric permittivity qs(ω) and a vacuum magnetic permittivity μ = 1. The scale-dependent resonances exist inside narrow frequency bands where they can have a modified magnetic permittivity μ = 1. Magnetic properties originate from the non-vanishing magnetic moment produced by the currents inside any given plasmonic inclusion due to the close proximity of the adjacent inclusions. Applications of SPCs to the development of novel left-handed metamaterials in the optical range are discussed. A new paradigm of the SPC-based surface-enhanced Raman scattering is also introduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

The origin of off-resonance non-linear optical activity of a gold chiral nanomaterial.

We demonstrate that engineered artificial gold chiral nanostructures display significant levels of non-linear optical activity even without plasmonic enhancement. Our work suggests that although plasmonic excitation enhances the intensity of second harmonic emission it is not a prerequisite for significant non-linear (second harmonic) optical activity. It is also shown that the non-linear optic...

متن کامل

Efficient Analysis of Plasmonic circuits using Differential Global Surface Impedance (DGSI) Model

Differential global surface impedance (DGSI) model, a rigorous approach, has been applied to the analysis of three dimensional plasmonic circuits. This model gives a global relation between the tangential electric field and the equivalent surface electric current on the boundary of an object. This approach helps one bring the unknowns to the boundary surface of an object and so avoid volumetric...

متن کامل

Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels

Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic fie...

متن کامل

DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies

Metallic nanostructures can be used to manipulate light on the subwavelength scale to create tailored optical material properties. Next to electric responses, artificial optical magnetism is of particular interest but difficult to achieve at visible wavelengths. DNA-self-assembly has proved to serve as a viable method to template plasmonic materials with nanometer precision and to produce large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005